

Big Data Analysis and Cross-Layer Optimization for Communication, Caching and Computing (C^3) Networks

Zhu Han

ECE and CS Departments, University of Houston Globecom 2017 Singapore

Thanks for NSF,

work by Ye Yu, Prof. Li Wang, Xunsheng Du and Kevin Tsai

Outline

Introduction and Motivation for C^3 Networks

Big Data Analysis and Cross Layer Optimization

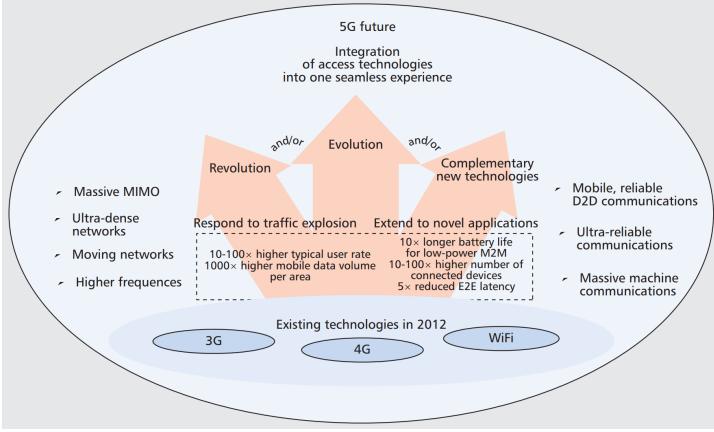
- Wireless Network Function Virtualization
- □ Mobile Social Networks over D2D
- Deep Learning Analysis
- **Conclusions**

UNIVERSITY of HOUSTON YOU ARE THE PRIDE Department of Electrical and

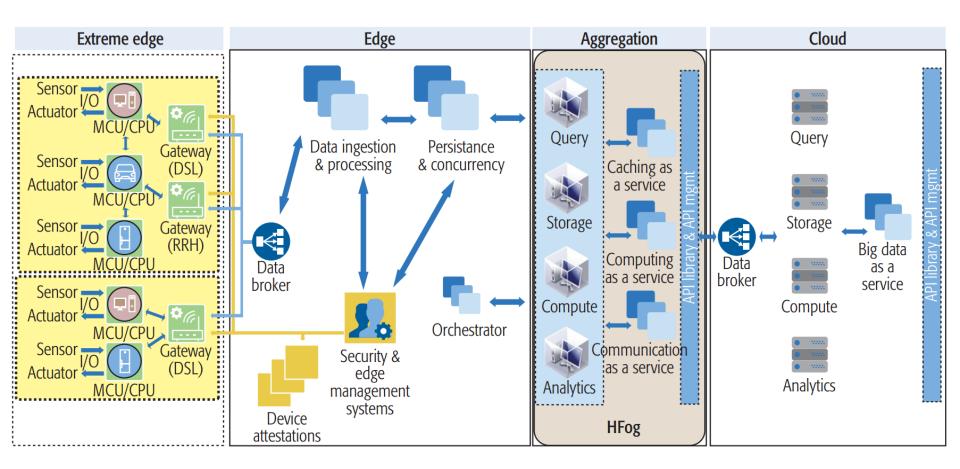
Computer Engineering

Future 5G Networks

Hyper-connected society High data rates at the network edge (1–10 Gb/s) Ultra low end-to-end latency (~1 ms).



* A. Osseiran et al., "Scenarios for 5G mobile and wireless communications: the vision of the METIS project," in IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, May 2014.



* A. Osseiran et al., "Scenarios for 5G mobile and wireless communications: the vision of the METIS project," in IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, May 2014.

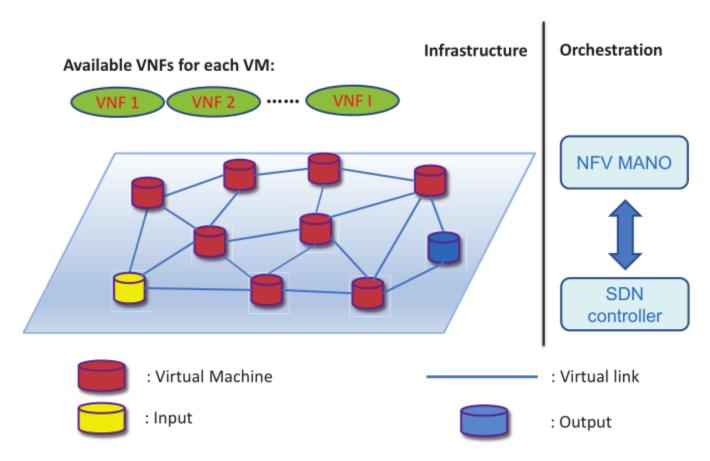
Introduction and Motivation for C^3 Networks

- Big Data Analysis and Cross Layer Optimization
 - Wireless Network Function Virtualization
 - Mobile Social Networks over D2D
 - Deep Learning Analysis
- **Conclusions**

NIVERSITY of OUSTON YOU ARE THE PRIDE Department of Electrical and

Department of Electrical and Computer Engineering

Virtualize entire classes of network node functions into building blocks that may connect, or chain together, to create communication services



Advantages

Reduce Expenditure; Accelerate Time-to-Market; Deliver Agility and Flexibility

Problem Formulation Example

DUSTON

UNIVERSITY of

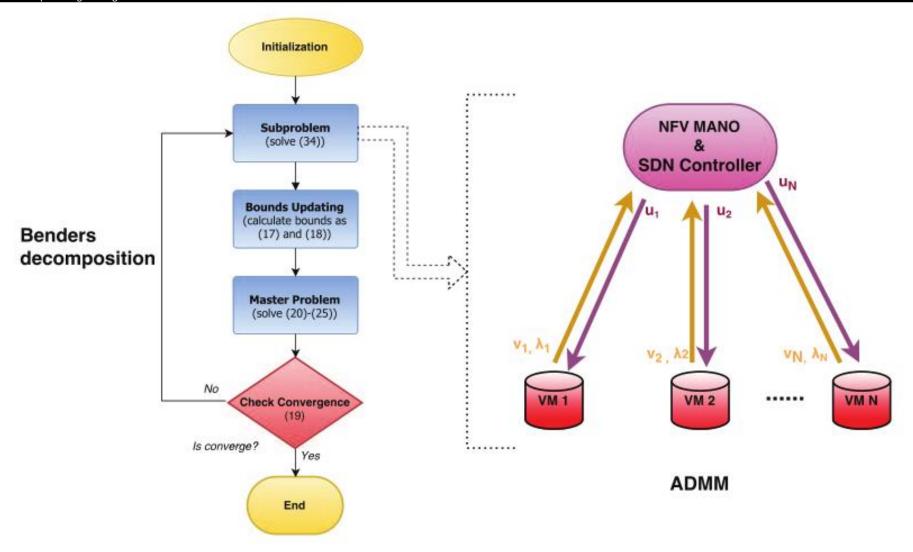
YOU ARE THE PRIDE

Н

UNIVERSITY of HOUSTON YOU ARE THE PRIDE

Department of Electrical and Computer Engineering

Proposed Algorithm



Benders Decomposition

General MILP

 $\begin{array}{ll}
\text{minimize} \\
x_1, \dots, x_n; y_1, \dots, y_m
\end{array} \qquad \sum_{i=1}^n c_i \ x_i + \sum_{j=1}^n d_j \ y_j
\end{array}$

subject to

$$\begin{split} \sum_{i=1}^{n} a_{\ell i} x_{i} + \sum_{j=1}^{m} e_{\ell j} y_{j} &= b_{\ell}; \quad \ell = 1, \dots, q \\ x_{i}^{\text{down}} &\leq x_{i} \leq x_{i}^{\text{up}}, \quad x_{i} \in \mathbb{N}; \quad i = 1, \dots, n \\ y_{j}^{\text{down}} &\leq y_{j} \leq y_{j}^{\text{up}}, \quad y_{j} \in \mathbb{R}; \quad j = 1, \dots, m . \end{split}$$

Benders Decomposition

Step 0: Initialization. Initialize the iteration counter, $\nu = 1$, and let

$$x_i^{(\nu)} = \begin{cases} x_i^{\text{down}} & \text{if } c_i \ge 0\\ x_i^{\text{up}} & \text{if } c_i < 0 \end{cases}$$
$$\alpha^{(\nu)} = \alpha^{\text{down}}$$

Step 1: Subproblem solution. Solve the LP subproblem

$$\begin{array}{ll} \text{minimize} \\ y_1, \dots, y_m \end{array} \quad \sum_{j=1}^m d_j \ y_j \end{array}$$

subject to

$$\sum_{j=1}^{m} e_{\ell j} y_j = b_{\ell} - \sum_{i=1}^{n} a_{\ell i} x_i; \quad \ell = 1, \dots, q$$
$$y_j^{\text{down}} \le y_j \le y_j^{\text{up}}, \qquad y_j \in \mathbb{R}; \quad j = 1, \dots, m$$
$$x_i = x_i^{(\nu)}: \quad \lambda_i; \quad i = 1, \dots, n.$$

The solution of this problem is $y_1^{(\nu)}, \ldots, y_m^{(\nu)}$ with dual variable values $\lambda_1^{(\nu)}, \ldots, \lambda_n^{(\nu)}$.

Computer Engineering

Step 2: Convergence checking. Compute upper and lower bounds of the optimal value of the objective function of the original problem

$$z_{\rm up}^{(\nu)} = \sum_{i=1}^{n} c_i \ x_i^{(\nu)} + \sum_{j=1}^{m} d_j \ y_j^{(\nu)}$$

$$z_{\text{down}}^{(\nu)} = \sum_{i=1}^{n} c_i \ x_i^{(\nu)} + \alpha^{(\nu)} \ .$$

If $z_{up}^{(\nu)} - z_{down}^{(\nu)}$ is smaller than a pre-specified tolerance, stop, the optimal solution is $x_1^{(\nu)}, \ldots, x_n^{(\nu)}$ and $y_1^{(\nu)}, \ldots, y_m^{(\nu)}$. Otherwise, the algorithm continues with the next step.

Benders Decomposition

Step 3: Master problem solution. Update the iteration counter, $\nu \leftarrow \nu + 1$. Solve the MILP master problem

 $\begin{array}{ll}
\text{minimize} \\
x_1, \dots, x_n, \alpha \\
\end{array} \qquad \sum_{i=1}^n c_i x_i + \alpha
\end{array}$

subject to

$$\begin{array}{ll} \alpha \geq \sum_{j=1}^{m} d_{j} y_{j}^{(k)} + \sum_{i=1}^{n} \lambda_{i}^{(k)} (x_{i} - x_{i}^{(k)}); & k = 1, \ldots, \nu - 1 \\ \\ & \\ \text{Benders} \\ & \\ \text{cut} & x_{i}^{\text{down}} \leq x_{i} \leq x_{i}^{\text{up}}, & x_{i} \in \mathbb{N}; & i = 1, \ldots, n \\ & \\ & \alpha \geq \alpha^{\text{down}} \end{array}$$

The solution of this problem is $x_1^{(\nu)}, \ldots, x_n^{(\nu)}$ and $\alpha^{(\nu)}$. The algorithm continues with Step 1.

min
$$f(x) + g(z)$$

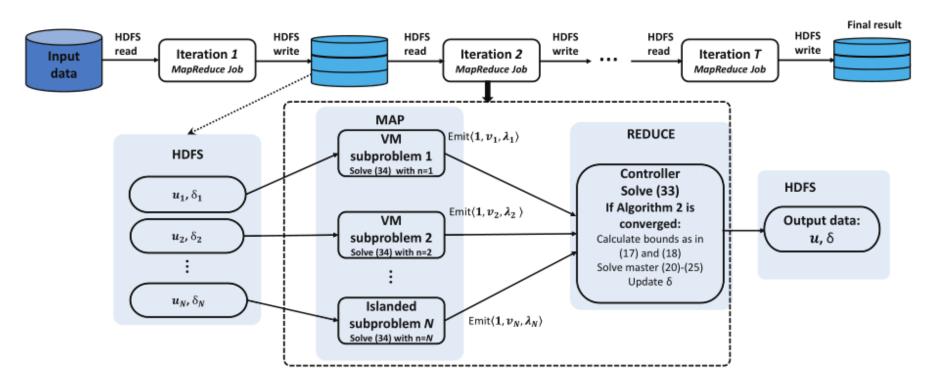
s.t. $Ax + Bz = c$.

Augmented Lagrangian function

$$\mathcal{L}(x,z,\lambda) = f(x) + g(z) + \lambda^T (Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|^2$$

Iterative procedure to solve an optimization problem using ADMM

$$\begin{split} x[t+1] &:= \underset{x}{\arg\min} \mathcal{L}(x, z[t], \lambda[t]), & \quad & \quad & \quad & \quad \\ \text{California} \\ \text{government} \\ z[t+1] &:= \underset{z}{\arg\min} \mathcal{L}(x[t+1], z, \lambda[t]), & \quad & \quad & \quad \\ \text{Texas} \\ \text{government} \\ \lambda[t+1] &:= \lambda[t] + \rho \left(Ax[t+1] + Bz[t+1] - c\right), & \quad & \quad \\ \text{US} \\ \text{Congress} \\ \end{split}$$



Simulation Results

Department of Electrical and Computer Engineering

ARE THE PRIDE

UNIVERSITY of

H

YOU

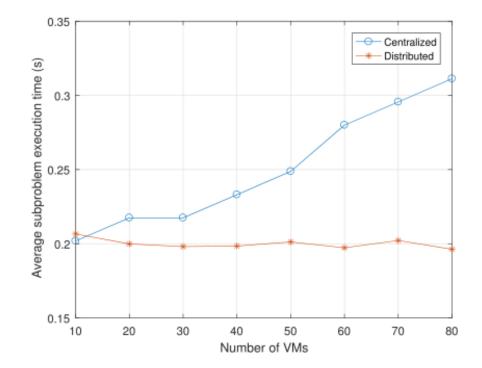


Fig. 9: The average execution time of subproblem versus number of VMs

Introduction and Motivation for C^3 Networks

Big Data Analysis and Cross Layer Optimization

Wireless Network Function Virtualization

Mobile Social Networks over D2D

Deep Learning Analysis

Conclusions

UNIVERSITY of HOUSTON YOU ARE THE PRIDE Department of Electrical and Computer Engineering

D2D Communication

- Device-to-Device (D2D) Communications/Sidelink
 - Technology that enables devices to connect directly without relying on infrastructure of access points or base stations.
 - 1 Increase network capacity
 - 2 Extend (edge) coverage
 - ③ Offload data
 - ④ Improve energy efficiency
 - 5 Create new applications

licensed (Inband) spectrum

- Underlay vs. Overlay
- UpLink vs. DownLink
- Mode Selection (D2D mode vs. Cellular Mode)

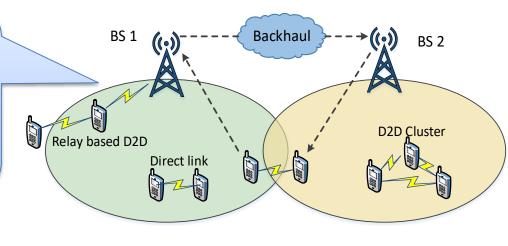
TS36.300 v12 (2015.02)

section 23.10 for D2D Communications

section 23.11 for D2D Discovery (proximity detection for commercial services)

TS36.211 v12 (2015.10)

section 9: a sidelink is used for ProSe direct communication and ProSe direct discovery between UEs. (ProSe – Proximity Services) 17



--→ Cellular links → D2D links Figure: Scenario of D2D Communications

- Imminent wireless capacity crunch
 - Smartphones with larger storage and higher computing capability
 - Mobile social platforms, e.g.,

- Virtual and Social Community
 - Social tie (family members, club members...)
 - Social relationship with common interest
 - Social interactions
- Continuous (uninterrupted) wireless connection
- File sharing & Online gaming & Video dissemination
- D2D---exploit benefits from social networking
 - in terms of pairs and clusters
 - to offload the increasing traffic from base stations (BSs)
 - to meet the higher speed demands for mobile users

UNIVERSITY of HOUSTON YOU ARE THE PRIDE Department of Electrical and Computer Engineering

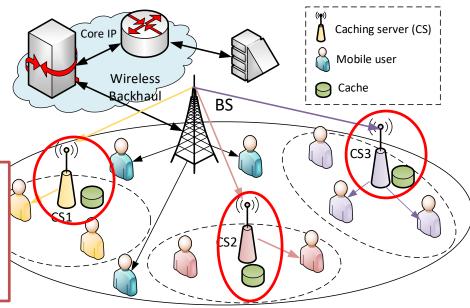
Wireless Distributed Storage Systems

Wireless distributed storage:

- Store the popular content files at the BS/mobile devices during off-hours to improve the end-to-end performance and reduce backhaul loading at peak-hours
- Banafits of wireleasustorages
- Popartity files are beine received from the BS and
- · Stouldobin thefific will cacheg
- Fritesfirretscearchtegation be accessed by other users within its coverage at a later time
- Wireless caching schemes:
 - Coded caching to create coded multicast opportunities
 - Proactive caching to exploit both the spatial and social structure of the wireless networks
 - D2D caching networks to reduce number of hops and balance load
 - Asymptotic scaling laws in large wireless networks

Focus:

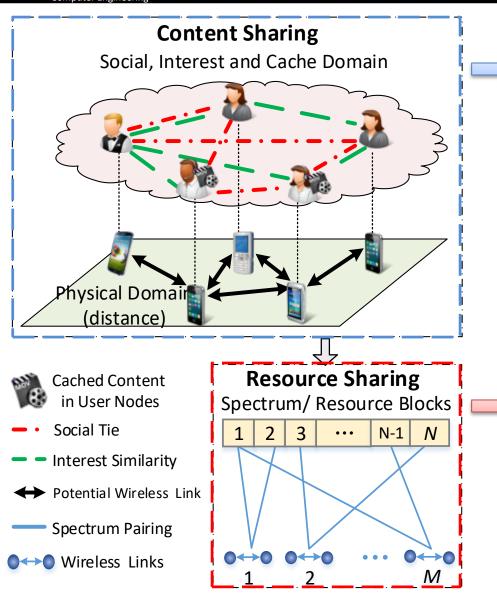
In D2D-based wireless distributed storage systems, resource allocation and content sharing are investigated in different scenarios with different objective functions



UNIVERSITY of HOUSTON YOU ARE THE PRIDE

Department of Electrical and <u>Computer Engineering</u>

D2D-Based Distributed Storage Systems



Upper layer: Content sharing for D2D partners to form Links

Main considerations:

- Social relationship
- Interest similarity
- Physical proximity
- Caching capability
- Computing capability
- Content coding

Lower layer: Resource sharing for CUE and D2D Links in D2D Underlay

Main considerations:

- Channel state information
- Power control
- Co-channel interference

Basic elements (Stable Marriage (SM)):

- 1. Agents: A set of men, and a set of women;
- 2. **Preference list:** A sorted list of men/women based on her/his preferences;
- 3. Blocking pair (BP) (m,w):

m prefers w to his current partner; w prefers m to her current partner;

- 4. Stable matching: A matching admit no BPs.
- 5. Gale-Shapley (GS) algorithm: find a stable matching in SM

GS Algorithm

Geeta, Heiki, Irina, Fran

Irina, Fran, Heiki, Geeta

Geeta, Fran, Heiki, Irina

Irina, Heiki, Geeta, Fran We reach a stable marriage!

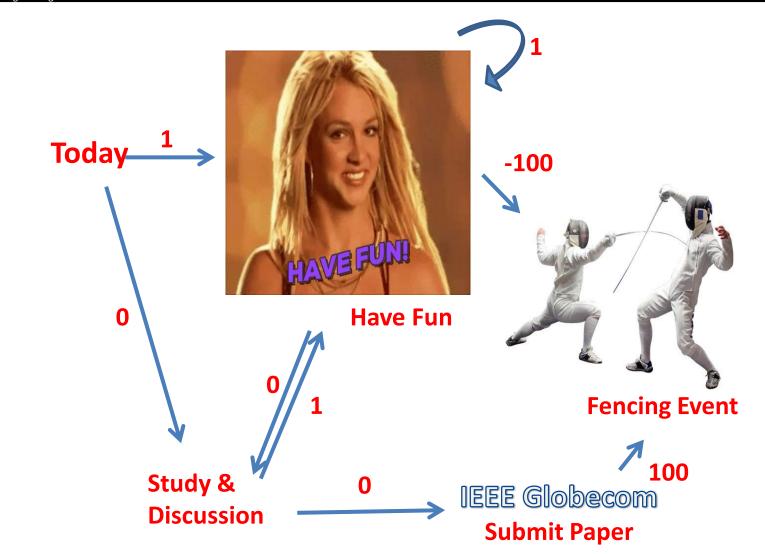
Introduction and Motivation for C^3 Networks

Big Data Analysis and Cross Layer Optimization

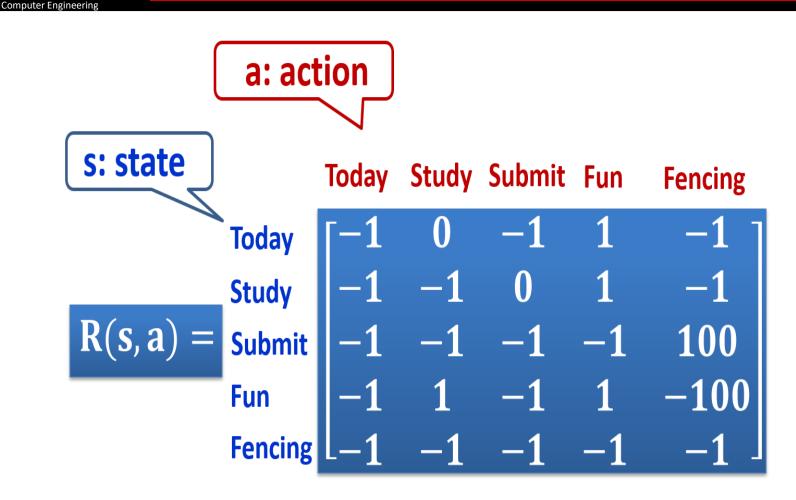
- Wireless Network Function Virtualization
- □ Mobile Social Networks over D2D
- Deep Learning Analysis
- **Conclusions**

Reinforcement Learning

An Example



Rewards



UNIVERSITY of

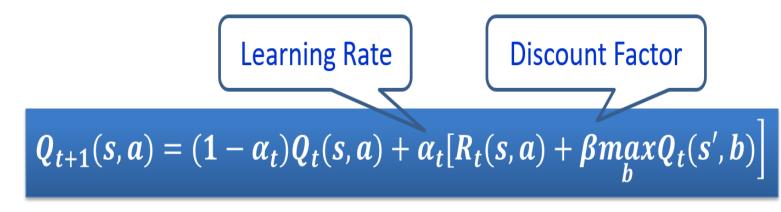
ARE THE PRIDE Department of Electrical and

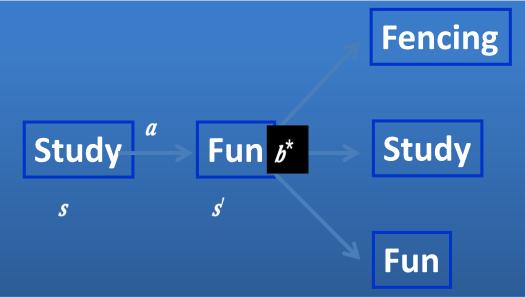
YOU

Initially set to zero

Q-Learning

Department of Electrical and Computer Engineering

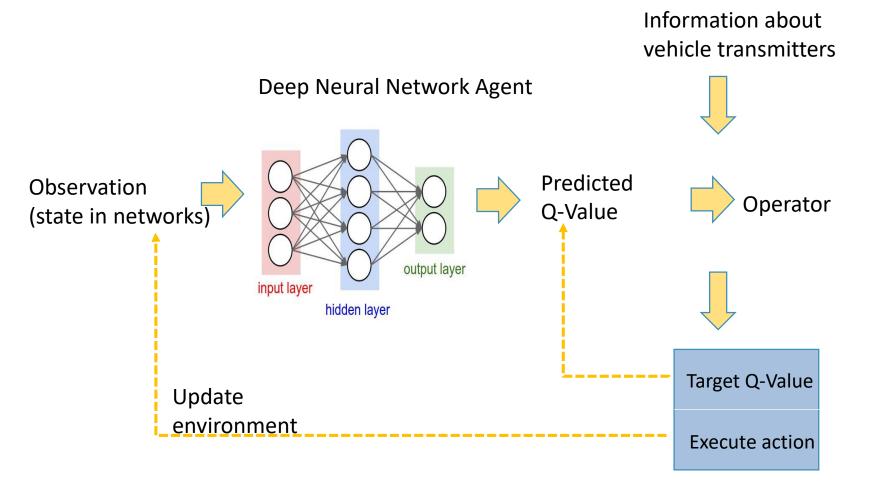




UNIVERSIT HOUSTC YOU ARE THE PRIL

Department of Electrical Computer Engineerin

Deep Reinforcement Learning Framework



AlphaGo Zero beats AlphaGo beats Human

- Communication, Caching and Computing are potential solutions to achieve 5G
- Challenge is how to write utility to link them
- Scenarios vs. solutions
 - Network virtualization based on Benders decomposition and ADMM
 - Mobile social networks over D2D based on matching
 - Deep reinforcement learning
- Just a small peek on a new paradigm

Thank You!

Proposed Algorithm

 $Q_p + \alpha$ $\min_{\boldsymbol{\delta}^m \alpha}$ $\text{s.t} \quad 1 \leq \sum^N \delta^m_{n,k} \leq N \quad \forall k,m,$ Algorithm 1 NFV Resource al 1: Initialize: loop index $l, U_{\delta_{n}^{m}}$ $Q_t(\mathbf{v}^{m,(j)}) + \boldsymbol{\theta}^{m,(j)}(\boldsymbol{\delta}^m - \boldsymbol{\delta}^{m,(j)}) \le \alpha \quad j = 1, \dots, l-1,$ 2: while $Q_{up}^l - Q_{down}^l \ge \varepsilon$ do Subproblem 3: $\sum_{k=1}^{n} \delta_{n,k}^m v_{n,k}^m \phi_k \le C_n \quad \forall n, m,$ acquire $\mathbf{v}^{m(l)}$ and $\boldsymbol{\theta}^m$ 4: **Bounds calculation** 5: $\alpha \geq \alpha^{down}$ calculate upper and l 6: $\delta_{n,k}^m \in \{0,1\} \quad \forall m, n, k,$ Master problem 7: step 1: update loop index l = l + 18:

- 9: step 2: add new Benders cut to the problem (20)
- 10: step 3: solve the problem (20) to obtain the optimal value of δ^m and α

11: end while

UNIVERSITY of

Department of Electrical and Computer Engineering

Proposed Algorithm

variable

• Transformation of subproblem

$$\begin{split} & \underset{\mathbf{v}^{m}}{\min} \quad Q_{t} \\ & \text{s.t} \quad \sum_{k=1}^{K} \delta_{n,k}^{m} v_{n,k}^{m} \phi_{k} \leq C_{n} \quad \forall n, m, \\ & \sum_{n=1}^{N} v_{n,k}^{m} \geq R_{k} \quad \forall k, \\ & \mu_{f_{k}} \leq \frac{\sum_{n=1}^{N} v_{n,k+1}^{m}}{\sum_{n=1}^{N} v_{n,k}^{m}} \quad \forall k, \\ & \delta_{n,k}^{m} = \delta_{n,k}^{m,(l)} : \theta_{n,k}^{m,(l)} \quad \forall m, n, k. \end{split}$$

UNIVERSITY of HOUSTON YOU ARE THE PRIDE

Proposed Algorithm

Algorithm 2 Distributed algorithm for the subproblem based on ADMM

- 1: Initialize: t, λ , v
- 2: while the stopping criterion is not satisfied do
- 3: Controller update
- 4: repeat
- 5: wait
- 6: **until** receive updated λ , **v** from all N distributed VMs

7: step 1: Solve the problem (44) and obtain the optimal solution \tilde{u}

8: step 2: Then send \tilde{u} to the VMs

9: step 3: Update
10: Each VM u
11: Each VM u
12: repeat
13: wait
14: until receive
15: step 1: So
16: step 2: Up
17:
$$\lambda_{[i]}$$

18: step 3: Se
19: end while
(45) $\sum_{k=1}^{K} \gamma_k v_{n,k}^m + \sum_{k=1}^{K} \lambda_{n,k} + \frac{\rho}{2} \sum_{k=1}^{K} ||v_{n,k}^m - \tilde{u}_{n,k}^m||_2^2$ (45)

UNIVERSITY of HOUSTON YOU ARE THE PRIDE

Algorithm 3 ADMM-based Bender decomposition using Hadoop MapReduce

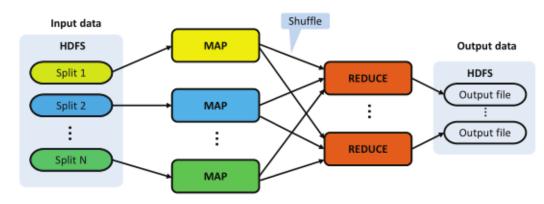
- 1: function MAP(vm_ID, inputData)
- 2: Load data of previous iteration from HDFS corresponding to vm_ID
- 3: Solve subproblem corresponding to each VM in (45)
- 4: Update λ_n using (46)
- 5: EMIT $\langle 1, \{\boldsymbol{v}_n, \boldsymbol{\lambda}_n\} \rangle$

6: end function

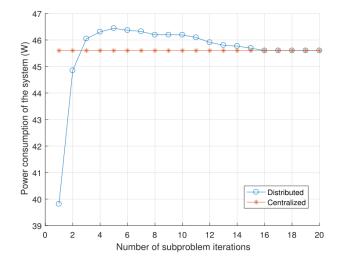
7:

8: function REDUCE(key, Data from Mappers)

- 9: Concatenate $\{\boldsymbol{v}_n, \boldsymbol{\lambda}_n\}$ from all VMs
- 10: Solve controller subproblem (44) for u
- 11: **if** Algorithm 2 is converged **then**
- 12: Calculate Upper bound and Lower bound as in (17) and (18)
- 13: Sove master problem in (20)
- 14: Update δ
- 15: end if
- 16: EMIT $\langle \{ u, \delta \}
 angle$
- 17: end function
- 18:
- 19: function MAIN(inputPath, outputPath)
- 20: Initialization
- 21: while $Q_{up}^l Q_{down}^l \ge \varepsilon$ do
- 22: **run** MapReduceJob (inputPath, outputPath)
- 23: $t \leftarrow t+1$
- 24: end while
- 25: end function



Simulation Results



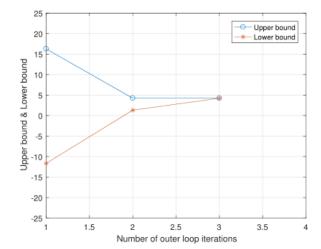


Fig. 6: The convergence performance of ADMM Fig. 7: The convergence performance of Benders decomposition