System Level Challenges for mmWave Cellular

Sundeep Rangan, NYU WIRELESS

December 4, 2016 Globecom Workshops, Washington, DC

Outline

MmWave cellular: Potential and challenges

- Directional initial access
- Transport performance with intermittent channels
- Future directions

MmWave: The New Frontier for Cellular

- Massive increase in bandwidth
- Spatial degrees of freedom from large antenna arrays

From Khan, Pi "Millimeter Wave Mobile Broadband: Unleashing 3-300 GHz spectrum," 2011

Commercial 64 antenna element array

NYU Wireless

MmWave: It Can Work!

- First tests in NYC
 - Likely initial use case
 - Mostly NLOS
 - "Worst-case" setting
- Microcell type deployment:
 - Rooftops 2-5 stories to street-level
- Distances up to 200m

All images here from Rappaport's measurements:

Azar et al, "28 GHz Propagation Measurements for Outdoor Cellular Communications Using Steerable Bean Antennas in New York City," ICC 2013

NYU Wireless

Comparison to Current LTE

- Initial results show significant gain over LTE
 - Further gains with spatial mux, subband scheduling and wider bandwidths

System antenna	Duplex BW	fc (GHz)	Antenna	Cell throughput (Mbps/cell)		Cell edge rate (Mbps/user, 5%)	
				DL	UL	DL	UL
mmW	1 GHz TDD	28	4x4 UE 8x8 eNB	1514	1468	28.5	19.9
		73	8x8 UE 8x8 eNB	1435	1465	24.8	19.8
Current LTE	20+20 MHz FDD	2.5	(2x2 DL, 2x4 UL)	53.8	47.2	1.80	1.94
10 UE hex co LTE c	s per cell, ell layout apacity est I Wireless	ISD=200 imates fr	m, om 36.814	~ 25x g) Jain	~ 10x ga	ain

Challenge 1: Directionality

Uday Mudoi, Electronic Design, 2012

http://www.miwaves.eu/

- Need directionality for power gain, spatial multiplexing
- Challenges:
 - Channel tracking, search, control and multi-access
 - MIMO architectures, power consumption

Challenge 2: Blockage and Channel Dynamics

- Signals blocked by many common materials
- Brick > 80 dB, human body 20 to 25 dB
- System implications:
 - Highly variable channels
 - Need fast channel tracking, macro-diversity, ...

Outline

- MmWave cellular: Potential and challenges
 - Directional initial access
- Transport performance with intermittent channels
- Future directions

Directional Initial Access

- Initial access in cellular
 - Initial attachment
 - Idle to connected mode
 - 4G to 5G
- Two-way handshake
- Challenge in mmWave:
 - Directional search
 - BS and UE
- Potential for increased delay

[Barati, Hosseini, Rangan, Zorzi, "Directional Initial Access in mmWave," 2015

Delay Requirements for 5G mmWave

Item	Airlink RTT measurement	Current LTE	Target for 5G
Data plane latency	UE in connected mode	22 ms	< 1 ms
Control plane latency	UE begins in idle mode	80 ms	5 ms?

- Why we need low control plane latency for mmWave?
 - Channels are intermittent, handovers rapid
 - Fast connection re-establishment from link failure
 - 4G to 5G handover
 - Aggressive low power idle mode utilization

MIMO Architectures for mmWave

- Analog phased array
 - Lowest power. 1 ADC
 - Looks in only direction at a time
- Fully digital architecture
 - Highest power. NADCs
 - Looks in multiple directions
- Hybrid architecture
 - Medium power. M < N ADCs

Low Power Fully Digital

- Fully digital architectures
 - Can look in multiple directions at a time
 - But, high power consumption
- Low quantization rates (2-3 bits)
 - Low power solution
- Effect of low resolution is limit on high SNR
 - Many low SNR channels are unaffected

Search Options for Sync

Item	Option	HW	
BS Sync Transmit	Directional TX sequential scan	Analog	UE I A BS
	Omni fixed TX	Analog	UE D BS
UE Sync receive	Directional RX sequential scan	Analog	UE A BS
	Digital (all directions at once)	Digital	
NYU Wireless			NYU WIRELESS

13

Comparison of Options Sync Delay Random access delay 10 DO and DDD 1% SNR (1 = 10,43) DDD and DDD high SNR (1 = 10,43) ODD and ODDig 1% SNR (1 = 100,43) ODD and ODDig 1% SNR (1 = 100,43) ODD and ODDig high SNR (1 = 100,43) DESCRIPTION OF THE SMELL 10 ₀-DDO 1% SNR (T_{alg} = 100µs) ₀-DDO high SNR (T_{alg} = 100µs) ₀ DDD and ODD 1% SNR (T_{alg} = 50µs) ₀ DDD and ODD high SNR (T_{alg} = 50µs) ₀-CDDig and ODigDig 1% SNR (T_{alg} = 10µs) ₀-CDDig and ODigDig high SNR (T_{alg} = 10µs) ODIgDig 1% SNR (T = 50, s) 10 103 ODigDig high SNR (50µs) 10 Detay (ms) Delay (ms) ***** 10 10 10 10 10-1

ΜΙΜΟ	Best option	Sync delay	RA delay
Analog BF only	ODD	32 ms	128 ms
Low power digital	ODigDig	4 ms	2 ms

10

п

0.05

0.1

Overhead (%)

0.15

0.2

Delays for 1% cell edge UE 5% overhead each direction

0.05

0

0.1 Overhead (%)

0.15

0.2

NYU Wireless

Outline

- MmWave cellular: Potential and challenges
- Directional initial access
 - Transport performance with intermittent channels
- Future directions

15

Transport Layer Challenges

- MmWave links:
 - Intermittent
 - Very high peak rates
- Questions:

NYU Wireless

- Can current TCP adapt?
- If not, how do we fix TCP?
- Should the core network evolve?

M. Zhang *et al.*, "Transport layer performance in 5G mmWave cellular," Infocom workshops, 2016

Packet core

Ray tracing data

Data from Nix, Melios, U Bristol

- Very rapid (< 1m) transitions around buildings
- Diffraction is minimal

17

NLOS

Lab Measurements 60 GHz

Sivers 60 Hz RF module Directional horn antenna 23 dBi gain, 9.5 deg beamwidth

NYU Wireless

Aditya Dhananjay, Millilabs & NYU

Ns3 End-to-end Simulation

• All code is publicly available

NYUWireless

Flexible MAC Layer

NYU Wireless

- Flexible frame structure
- Dynamically scheduled ACKs
- Low latency HARQ
 - $< 1 \mathrm{ms} \mathrm{RTT}$
- Efficiently accommodates:
 - Small packets (e.g. TCP ACKs)
 - Control messages
 - Dynamic duplexing

Insights from Simulations...

- Very low initial ramp up under current TCP slow start
- Bufferbloat during blockage periods
- Very slow recovery from losses (even under TCP cubic)

Outline

- MmWave cellular: Potential and challenges
- Directional initial access
- Transport performance with intermittent channels Future directions

23

Conclusions

- MmWave presents fundamental challenges for system design:
 - Directionality and limits on RF architecture
 - Very high peak rates, but very bursty
- Solutions involve multiple layers
 - RF, MAC, network, ...
- Other topics:
 - Distributed core network architecture
 - Applications

NYU WIRELESS Industrial Affiliates

NYU Wireless

25

Thanks

- Faculty:
 - Ted Rappaport, Elza Erkip, Shiv Panwar, Pei Liu
 - Michele Zorzi (U Padova)
- Postdocs: Marco Mezzavilla, Aditya Dhananjay
- Students:
 - Sourjya Dutta, Parisa Amir Eliasi, Russell Ford, George McCartney, Oner Orhan, Menglei Zhang
- U Bristol ray tracing: Evangelos Mellios, Di Kong, Andrew Nix

References

- Rappaport et al. "Millimeter wave mobile communications for 5G cellular: It will work!." *Access, IEEE* 1 (2013): 335-349.
- Rangan, Rappaport, Erkip, "Millimeter Wave Cellular Systems: Potentials and Challenges", Proc. IEEE, April 2014
- Akdeniz, Liu, Rangan, Rappaport, Erkip, "Millimeter Wave Channel Modeling and Cellular Capacity Evaluation", JSAC 2014
- Eliasi, Rangan, and Rappaport. "Low-Rank Spatial Channel Estimation for Millimeter Wave Cellular Systems." <u>http://arxiv.org/abs/1410.4831</u>
- S. Dutta, M. Mezzavilla, R. Ford, M. Zhang, S. Rangan and M. Zorzi, "MAC layer frame design for millimeter wave cellular system," IEEE EuCNC, *2016*
- C. N. Barati et al., "Initial Access in Millimeter Wave Cellular Systems," IEEE TWC, Dec. 2016.
- M. Zhang et al., "Transport layer performance in 5G mmWave cellular," INFOCOM, 2016
- C. N. Barati *et al.*, "Directional Cell Discovery in Millimeter Wave Cellular Networks," in *IEEE TWC*, Dec. 2015.

27